• Answer 1:

(*i*) Let *G* and *H* be two groups of order *p*, a prime. Then *G*, *H* are cyclic groups of order *p*. Let $G = \langle a \rangle$ and $H = \langle b \rangle$. Consider the map $\phi : G \longrightarrow H$, and is defined by $a \mapsto b$. One can show that ϕ is an isomorphism. This proves the statement.

(*ii*) Consider C_6 and S_3 . We know that C_6 is abelian and S_3 non-abelian. So they are non-isomorphic.

Answer 2: Let G = ^p√1 = {z|z^{pⁿ} = 1}, for some n, denote the group of pⁿth root of unity under multiplication. Then G = ⟨z⟩ ≅ C_{pⁿ}, cyclic group of order pⁿ. Let H be a proper subgroup of G. Let m be the least positive integer such that z^{p^m} ∈ H. We show that H is generated by z^{p^m}.

Let z^{p^s} be an element of H, and $m \le s$. Then by division algorithm, $p^s = p^m q + r$, where q and r are integers, $0 \le r < p^m$. Then $z^{p^s} = z^{p^m q + r}$, so $z^r = z^{p^s - p^m q} \in H$, implies r = 0. Therefore, $z^{p^s} = z^{p^m q}$. Since, z^{p^s} be an arbitrary element of H, so z^{p^m} is a generator of H. Hence, it is proved that every proper subgroup of G is cyclic.

- Answer 3: Let *G* be a group and *H* ≠ *G* be a subgroup of finite index. Let [*G* : *H*] = *n*. Consider the action of *G* on *G*/*H* by left multiplication. This action induces a homomorphism φ : *G* → Sym(*G*/*H*). By First Isomorphism Theorem, we get *G*/*ker*φ ≅ *Im*(φ). Therefore, [*G* : *Ker*φ] is finite. But Kerφ is the intersection of conjugates of *H*. Therefore, *H* contains Kerφ, which is a normal subgroup of *G* of finite index.
- Answer 4:

Theorem 0.0.1. (*First Isomorphism Theorem*) Let G and H be two groups. Let $\phi : G \mapsto H$ be a group homomorphism. Then $G/Ker\phi \approx Im\phi$.

The proof of the First Isomorphism Theorem is available in any standard Algebra text book.

- Answer 5: Let *f* : *G* → *H* be an isomorphism of groups. Then it is clear that *f*⁻¹ is a bijective map. We show that *f*⁻¹ : *H* → *G* is a group homomorphism. For *a*, *b* ∈ *H*, *f*(*f*⁻¹(*a*)*f*⁻¹(*b*)) = *f*(*f*⁻¹(*a*))*f*(*f*⁻¹(*b*)) = *ab*, then applying both the sides *f*⁻¹, we get *f*⁻¹(*a*)*f*⁻¹(*b*) = *f*⁻¹(*ab*). Hence, *f*⁻¹ : *H* → *G* is a group isomorphism.
- Answer 6:
 - (*a*) The permutation (0, 1, 2, 3, 4, 5, 6) is not a group automorphism of $\mathbb{Z}/7\mathbb{Z}$ as 0 goes to 1.

(*b*) The permutation (1, 2, 3, 4, 5, 6) is not a group automorphism of $\mathbb{Z}/7\mathbb{Z}$. Under the permutation (1, 2, 3, 4, 5, 6), 2 goes to 3, actually 2 should goes to 4.

- (*c*) The permutation (1, 2, 4)(3, 6, 5) is a group automorphism of $\mathbb{Z}/7\mathbb{Z}$.
- (*d*) The permutation (1, 3, 2, 6, 4, 5) is a group automorphism of $\mathbb{Z}/7\mathbb{Z}$.
- (*e*) The permutation (1, 4, 2)(3, 5, 6) is a group automorphism of $\mathbb{Z}/7\mathbb{Z}$.